pd-lib-builder cheatsheet ========================= # Creating special builds ## Building for non-native platform Using pd-lib-builder >=0.6.0 we can define variable `PLATFORM` to specify a target triplet for cross-compilation. Assuming a W32 package for Pd is unzipped into path `${PDWIN32}`, to build for Windows 32 bit: make PLATFORM=i686-w64-mingw32 PDDIR="${PDWIN32}" #### Older pd-lib-builder versions Using pd-lib-builder < 0.6.0, in the absence of variable `PLATFORM`, you would instead override variables `system`, `target.arch`, `CC` and / or `CXX`, `STRIP`. Example: make system=Windows target.arch=i686 CC=i686-w64-mingw32-gcc STRIP=i686-w64-mingw32-strip PDDIR="${PDWIN32}" #### Toolchains To build for non-native OS and/or architecture you need a cross toolchain. On Linux such toolchains are relatively easy to get. For example Debian Buster amd64 provides them for the following platforms (install g++ with dependencies for a given platform to get the whole toolchain): - `arm-linux-gnueabihf` - `aarch64-linux-gnu` - `i686-linux-gnu` - `i686-w64-mingw32` and `x86_64-w64-mingw32` (install `mingw-w64`) Cross toolchains for OSX/MacOS are not generally distributed. Project `osxcross` from Thomas Poechtraeger can create them for Linux. ## Building double-precision externals At the time of writing (2018-02) there is no official Pd that supports double-precision numbers yet. However, if you do get hold of an experimental double-precision Pd, you can easily build your externals for 64-bit numbers: make CPPFLAGS="-DPD_FLOATSIZE=64" ## Universal binaries on macOS The compiler, by default, builds for the native architecture of the build machine. To make a "universal" multi-arch build, specify the desired archtectures on the command line using the "arch" pd-lib-builder Makefile variable. For example, to build a "fat" external for both 64-bit Intel and Arm (Apple Silicon): make arch="x86_64 arm64" If the build is successful, the compiled architectures in the built external can be confirmed via the `file` command: ~~~sh % file vbap.pd_darwin vbap.pd_darwin: Mach-O universal binary with 2 architectures: [x86_64:Mach-O 64-bit bundle x86_64] [arm64:Mach-O 64-bit bundle arm64] vbap.pd_darwin (for architecture x86_64): Mach-O 64-bit bundle x86_64 vbap.pd_darwin (for architecture arm64): Mach-O 64-bit bundle arm64 ~~~ Note: The available architectures depend on which macOS version & command line tools/Xcode combination the build system has. For example, any newer macOS 10.15+ will support both x86_64 (Intel 64-bit) and arm64 (Apple Silicon) while OSX 10.6 - macOS 10.14 can build for x86_64 and i386 (Intel 32-bit). # Project management In general it is advised to put the `Makefile.pdlibbuilder` into a separate subdirectory (e.g. `pd-lib-builder/`). This makes it much easier to update the `Makefile.pdlibbuilder` later You *should* also use a variable to the actual path of the Makefile.pdlibbuilder (even if you keep it in the root-directory), as this allows easy experimenting with newer (or older) (or site-specific) versions of the pd-lib-builder Makefile. ~~~make PDLIBBUILDER_DIR=pd-lib-builder/ include $(PDLIBBUILDER_DIR)/Makefile.pdlibbuilder ~~~ ## Keeping pd-lib-builder up-to-date ### `git subtree` With git-subtrees, you make the pd-lib-builder repository (or any other repository for that matter) part of your own repository - with full history and everything - put nicely into a distinct subdirectory. Support for *manipulating* subtrees has been added with Git-v1.7.11 (May 2012). The nice thing however is, that from "outside" the subtree is part of your repository like any other directory. E.g. older versions of Git can clone your repository with the full subtree (and all it's history) just fine. You can also use git-archive to make a complete snapshot of your repository (including the subtree) - nice, if you e.g. want self-contained downloads of your project from git hosting platforms (like Github, Gitlab, Bitbucket,...) In short, `git subtree` is the better `git submodule`. So here's how to do it: #### Initial setup/check-out This will create a `pd-lib-builder/` directory containing the full history of the pd-lib-builder repository up to its release `v0.5.0` ~~~sh git subtree add --prefix=pd-lib-builder/ https://github.com/pure-data/pd-lib-builder v0.5.0 ~~~ This will automatically merge the `pd-lib-builder/` history into your current branch, so everything is ready to go. #### Cloning your repository with the subtree Nothing special, really. Just clone your repository as always: ~~~sh git clone https://git.example.org/pd/superbonk~.git ~~~ #### Updating the subtree Time passes and sooner or later you will find, that there is a shiny new pd-lib-builder with plenty of bugfixes and new features. To update your local copy to pd-lib-builder's current `master`, simply run: ~~~sh git subtree pull --prefix pd-lib-builder/ https://github.com/pure-data/pd-lib-builder master ~~~ #### Pulling the updated subtree into existing clones Again, nothing special. Just pull as always: ~~~sh git pull ~~~ #### Further reading More on the power of `git subtree` can be found online - https://medium.com/@v/git-subtrees-a-tutorial-6ff568381844 - https://www.atlassian.com/blog/git/alternatives-to-git-submodule-git-subtree - ... ### ~~`git submodule`~~ [DISCOURAGED] #### Initial setup/check-out To add a new submodule to your repository, just run `git submodule add` and commit the changes: ~~~sh git submodule add https://github.com/pure-data/pd-lib-builder git commit .gitmodules pd-lib-builder/ -m "Added pd-lib-builder as git-submodule" ~~~ #### Cloning your repository with the submodule When doing a fresh clone of your repository, pass the `--recursive` option to automatically fetch all submodules: ~~~sh git clone --recursive https://git.example.org/pd/superbonk~.git ~~~ If you've cloned non-recursively, you can initialize and update the submodules manually: ~~~sh git submodule init git submodule update ~~~ #### Updating the submodule Submodules are usually fixed to a given commit in their repository. To update the `pd-lib-builder` submodule to the current `master` do something like: ~~~sh cd pd-lib-builder git checkout master git pull cd .. git status pd-lib-builder git commit pd-lib-builder -m "Updated pd-lib-builder to current master" ~~~ #### Pulling the updated submodule into existing clones After you have pushed the submodule updates in your repository, other clones of the repository can be updated as follows: ~~~sh git pull ~~~ The above will make your repository aware, that the submodule is out-of-sync. ~~~sh $ LANG=C git status pd-lib-builder On branch master Your branch is up to date with 'origin/master'. Changes not staged for commit: (use "git add ..." to update what will be committed) (use "git checkout -- ..." to discard changes in working directory) modified: pd-lib-builder (new commits) $ ~~~ In order to sync the submodule to the correct commit, run the following: ~~~sh git submodule update ~~~ #### Drawbacks `git submodule` has a number of drawbacks: - it requires special commands to synchronize the submodules, in addition to synching your repository. - you must make sure to use an URL for the submodule that is accessible to your potential users. e.g. using `git@github.com:pure-data/pd-lib-builder` is bad, because it requires everybody who wants to checkout your sources to have a github-account - even if they could checkout *your* repository anonymously. - submodules will be excluded from `git archive`. This means, that if you use a mainstream git provider (like Github, GitLab, Bitbucket,...) and make releases by creating a `git tag`, the automatically generated zipfiles with the sources will lack the submodule - and your users will not be able to compile your source code. In general, I would suggest to **avoid** `git submodule`, and instead use the better `git subtree` (above).