// // wirelessly connected cloud (based on ESP-NOW, a kind of LPWAN?) // // // Conversation about the ROOT @ SEMA storage, Seoul // // // 2021 02 15 // // this module will be an esp-now node in a group. // like, a bird in a group of birds. // // esp-now @ esp8266 w/ broadcast address (FF:FF:FF:FF:FF:FF) // always broadcasting. everyone is 'talkative'. // // then, let it save a value in EEPROM (object with memory=mind?) //======================== // #define MY_GROUP_ID (4000) #define MY_ID (MY_GROUP_ID + 401) #define MY_SIGN ("ROLLER2") // //======================== //===================== // // 'HAVE_CLIENT' // --> i have a client. enable the client task. // // 'SERIAL_SWAP' // --> UART pin swapped. // you want this, when you want a bi-directional comm. to external client boards (e.g. teensy). // // 'DISABLE_AP' // --> (questioning)... // // 'HAVE_CLIENT_I2C' // --> i have a client w/ I2C i/f. enable the I2C client task. // //==================== // // (EMPTY) //======================== // #define LED_PERIOD (11111) #define LED_ONTIME (1) #define LED_GAPTIME (222) // #define WIFI_CHANNEL 1 // // 'MONITORING_SERIAL' // // --> sometimes, the 'Serial' is in use (for example, 'osc' node) // then, use 'Serial1' - D4/GPIO2/TDX1 @ nodemcu (this is TX only.) // // --> otherwise, MONITORING_SERIAL == Serial. // #if defined(SERIAL_SWAP) #define MONITORING_SERIAL (Serial1) #else #define MONITORING_SERIAL (Serial) #endif // //======================= //======================== #if defined(ARDUINO_FEATHER_ESP32) // featheresp32 #define LED_PIN 13 #else #define LED_PIN 2 #endif //======================= //arduino #include //post & addresses #include "../../post.h" //espnow #include #include //task #include Scheduler runner; //-*-*-*-*-*-*-*-*-*-*-*-*- // servo #define MOTOR_1A (D6) #define MOTOR_1B (D5) // my tasks int speed = 0; bool isactive = false; void set_speed() { int r = speed; // if (r >= 0) { digitalWrite(MOTOR_1A, LOW); analogWrite(MOTOR_1B, r); } else { digitalWrite(MOTOR_1B, LOW); analogWrite(MOTOR_1A, r*(-1)); } MONITORING_SERIAL.print("set_speed:"); MONITORING_SERIAL.println(r); isactive = true; } Task set_speed_task(0, TASK_ONCE, &set_speed, &runner, false); // void rest() { analogWrite(MOTOR_1A, LOW); analogWrite(MOTOR_1B, LOW); isactive = false; } Task rest_task(0, TASK_ONCE, &rest, &runner, false); // uint8_t watch_counter = 0; void watcher() { if (isactive) { if (watch_counter > 3) { rest_task.restartDelayed(10); watch_counter = 0; } else { watch_counter++; } } } Task watcher_task(1000, TASK_FOREVER, &watcher, &runner, true); // #define MOTOR_2A (D3) #define MOTOR_2B (D2) // my tasks int speed2 = 0; bool isactive2 = false; void set_speed2() { int r = speed2; // if (r >= 0) { digitalWrite(MOTOR_2A, LOW); analogWrite(MOTOR_2B, r); } else { digitalWrite(MOTOR_2B, LOW); analogWrite(MOTOR_2A, r*(-1)); } MONITORING_SERIAL.print("set_speed2:"); MONITORING_SERIAL.println(r); isactive2 = true; } Task set_speed2_task(0, TASK_ONCE, &set_speed2, &runner, false); // void rest2() { analogWrite(MOTOR_2A, LOW); analogWrite(MOTOR_2B, LOW); isactive2 = false; } Task rest2_task(0, TASK_ONCE, &rest2, &runner, false); // uint8_t watch2_counter = 0; void watcher2() { if (isactive2) { if (watch2_counter > 3) { rest2_task.restartDelayed(10); watch2_counter = 0; } else { watch2_counter++; } } } Task watcher2_task(1000, TASK_FOREVER, &watcher2, &runner, true); //*-*-*-*-*-*-*-*-*-*-*-*-* // extern Task hello_task; static int hello_delay = 2000; void hello() { // byte mac[6]; WiFi.macAddress(mac); uint32_t mac32 = (((((mac[2] << 8) + mac[3]) << 8) + mac[4]) << 8) + mac[5]; // Hello hello(String(MY_SIGN), MY_ID, mac32); // the most basic 'hello' // and you can append some floats static int count = 0; count++; hello.h1 = (count % 1000); hello.h2 = speed; hello.h3 = (isactive ? 1 : 0); hello.h4 = speed2; // uint8_t frm_size = sizeof(Hello) + 2; uint8_t frm[frm_size]; frm[0] = '{'; memcpy(frm + 1, (uint8_t *) &hello, sizeof(Hello)); frm[frm_size - 1] = '}'; // esp_now_send(NULL, frm, frm_size); // to all peers in the list. // MONITORING_SERIAL.write(frm, frm_size); MONITORING_SERIAL.println(" ==(esp_now_send/0)==> "); // if (hello_delay > 0) { if (hello_delay < 100) hello_delay = 100; hello_task.restartDelayed(hello_delay); } } Task hello_task(0, TASK_ONCE, &hello, &runner, false); //task #0 : blink led extern Task blink_task; void blink() { // static int count = 0; count++; // switch (count % 4) { case 0: digitalWrite(LED_PIN, LOW); // first ON blink_task.delay(LED_ONTIME); break; case 1: digitalWrite(LED_PIN, HIGH); // first OFF blink_task.delay(LED_GAPTIME); break; case 2: digitalWrite(LED_PIN, LOW); // second ON blink_task.delay(LED_ONTIME); break; case 3: digitalWrite(LED_PIN, HIGH); // second OFF blink_task.delay(LED_PERIOD - 2* LED_ONTIME - LED_GAPTIME); break; } } Task blink_task(0, TASK_FOREVER, &blink, &runner, true); // -> ENABLED, at start-up. // on 'Note' void onNoteHandler(Note & n) { //is it for me? if (n.id == MY_GROUP_ID || n.id == MY_ID) { // if (n.pitch == 0) { speed = n.velocity; // if (n.onoff == 1) { set_speed_task.restartDelayed(10); watch_counter = 0; } else if (n.onoff == 0) { rest_task.restartDelayed(10); } else if (n.onoff == 2) { set_speed_task.restartDelayed(10); rest_task.restartDelayed(10 + n.x1); } } // else if (n.pitch == 1) { speed2 = n.velocity; // if (n.onoff == 1) { set_speed2_task.restartDelayed(10); watch2_counter = 0; } else if (n.onoff == 0) { rest2_task.restartDelayed(10); } else if (n.onoff == 2) { set_speed2_task.restartDelayed(10); rest2_task.restartDelayed(10 + n.x1); } } // } } // on 'receive' void onDataReceive(uint8_t * mac, uint8_t *incomingData, uint8_t len) { // //MONITORING_SERIAL.write(incomingData, len); // #if defined(HAVE_CLIENT) Serial.write(incomingData, len); // we pass it over to the client. #endif // open => identify => use. if (incomingData[0] == '{' && incomingData[len - 1] == '}' && len == (sizeof(Hello) + 2)) { Hello hello(""); memcpy((uint8_t *) &hello, incomingData + 1, sizeof(Hello)); // MONITORING_SERIAL.println(hello.to_string()); // } // open => identify => use. if (incomingData[0] == '[' && incomingData[len - 1] == ']' && len == (sizeof(Note) + 2)) { Note note; memcpy((uint8_t *) ¬e, incomingData + 1, sizeof(Note)); onNoteHandler(note); //is it for me? if (note.id == MY_GROUP_ID || note.id == MY_ID) { hello_delay = note.ps; if (hello_delay > 0 && hello_task.isEnabled() == false) { hello_task.restart(); } } MONITORING_SERIAL.println(note.to_string()); } } // on 'sent' void onDataSent(uint8_t *mac_addr, uint8_t sendStatus) { if (sendStatus != 0) MONITORING_SERIAL.println("Delivery failed!"); } // void setup() { //led pinMode(LED_PIN, OUTPUT); //pwm freq. analogWriteFreq(40000); //serial Serial.begin(115200); delay(100); //info Serial.println(); Serial.println(); Serial.println("\"hi, i m your postman.\""); Serial.println("-"); Serial.println("- my id: " + String(MY_ID) + ", gid: " + String(MY_GROUP_ID) + ", call me ==> \"" + String(MY_SIGN) + "\""); Serial.println("- mac address: " + WiFi.macAddress() + ", channel: " + String(WIFI_CHANNEL)); #if defined(HAVE_CLIENT) Serial.println("- ======== 'HAVE_CLIENT' ========"); #endif #if defined(SERIAL_SWAP) Serial.println("- ======== 'SERIAL_SWAP' ========"); #endif #if defined(DISABLE_AP) Serial.println("- ======== 'DISABLE_AP' ========"); #endif #if defined(HAVE_CLIENT_I2C) Serial.println("- ======== 'HAVE_CLIENT_I2C' ========"); #endif Serial.println("-"); //wifi WiFiMode_t node_type = WIFI_AP_STA; #if defined(DISABLE_AP) system_phy_set_max_tpw(0); node_type = WIFI_STA; #endif WiFi.mode(node_type); //esp-now if (esp_now_init() != 0) { Serial.println("Error initializing ESP-NOW"); return; } esp_now_set_self_role(ESP_NOW_ROLE_COMBO); esp_now_register_send_cb(onDataSent); esp_now_register_recv_cb(onDataReceive); // Serial.println("- ! (esp_now_add_peer) ==> add a 'broadcast peer' (FF:FF:FF:FF:FF:FF)."); uint8_t broadcastmac[6] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}; esp_now_add_peer(broadcastmac, ESP_NOW_ROLE_COMBO, 1, NULL, 0); // Serial.println("-"); Serial.println("\".-.-.-. :)\""); Serial.println(); #if defined(SERIAL_SWAP) Serial.println("- ======== 'SERIAL_SWAP' ========"); // a proper say goodbye. Serial.println("\"bye, i will do 'swap' in 1 second. find me on alternative pins!\""); Serial.println("\" hint: osc wiring ==> esp8266(serial.swap) <-> teensy(serial3)\""); Serial.println("-"); Serial.println("\".-.-.-. :)\""); delay(1000); // flush out unsent serial messages. // moving... Serial.swap(); // use RXD2/TXD2 pins, afterwards. delay(100); // wait re-initialization of the 'Serial' #endif //random seed randomSeed(analogRead(0)); //tasks rest_task.restartDelayed(500); rest2_task.restartDelayed(500); } void loop() { // runner.execute(); // }