// // wirelessly connected cloud (based on ESP-NOW, a kind of LPWAN?) // // // Conversation about the ROOT @ SEMA warehouses, Seoul // // // 2021 02 15 // //===================== // // 'HAVE_CLIENT' // --> i have a client. enable the client task. // // 'SERIAL_SWAP' // --> UART pin swapped. // you want this, when you want a bi-directional comm. to external client boards (e.g. teensy). // // 'DISABLE_AP' // --> (questioning)... // //==================== //===================== // // (1) standalone #if 1 // (2) osc client (the ROOT) #elif 0 #define SERIAL_SWAP #define HAVE_CLIENT // (3) sampler client #elif 0 #define SERIAL_SWAP #define HAVE_CLIENT #define DISABLE_AP // #endif // //==================== //======================== #define ROUNDLY_A_KEY 2000 // A-E-I-O-U-W-Y-N (up to 8 roundlys) - KEY 200 ~ 207 #define ROUNDLY_E_KEY 2001 #define ROUNDLY_I_KEY 2002 #define ROUNDLY_O_KEY 2003 #define ROUNDLY_U_KEY 2004 #define ROUNDLY_W_KEY 2005 #define ROUNDLY_Y_KEY 2006 #define ROUNDLY_N_KEY 2007 //======================= //======================== #define ID_KEY ROUNDLY_E_KEY //======================= //======================== // #define LED_PERIOD (11111) #define LED_ONTIME (1) #define LED_GAPTIME (222) // #define WIFI_CHANNEL 5 // // 'MONITORING_SERIAL' // // --> sometimes, the 'Serial' is in use (for example, 'osc' node) // then, use 'Serial1' - D4/GPIO2/TDX1 @ nodemcu (this is TX only.) // // --> otherwise, MONITORING_SERIAL == Serial. // #if defined(SERIAL_SWAP) #define MONITORING_SERIAL (Serial1) #else #define MONITORING_SERIAL (Serial) #endif // //======================= //======================== #if defined(ARDUINO_FEATHER_ESP32) // featheresp32 #define LED_PIN 13 #else #define LED_PIN 2 #endif //======================= //arduino #include //post & addresses #include "../../post.h" AddressBook members; //espnow #include #include //task #include Scheduler runner; //-*-*-*-*-*-*-*-*-*-*-*-*- #include #define STEP_MODE_CONSTANT_VEL (0xDE00 + 0x01) #define STEP_MODE_ACCELERATING (0xDE00 + 0x02) #define STEP_MODE STEP_MODE_CONSTANT_VEL // #define STEP_MODE STEP_MODE_ACCELERATING // NOTE: --> well.. acceleration enabled mode.. is a bit worse. (less torque) #define STEPS_PER_REV (2048.0) // speed (rpm) * steps-per-revolution == speed (steps per minute) // --> speed (steps per minute) / 60 == speed (steps per second) // --> speed (steps per second) * 60 / steps-per-revolution == speed (rpm) #define STEPS_PER_SEC_TO_RPM (60.0 / STEPS_PER_REV) #define RPM_TO_STEPS_PER_SEC (STEPS_PER_REV / 60.0) // parameter (torque-speed trade-off) #define STEPS_PER_SEC_MAX (500) #define RPM_MAX (STEPS_PER_SEC_MAX * STEPS_PER_SEC_TO_RPM) #define ACCELERATION_MAX (500) // AccelStepper stepper(AccelStepper::FULL4WIRE, D5, D6, D7, D8, false); // N.B. - @esp8266, NEVER use "5, 6, 7, 8" -> do "D5, D6, D7, D8" !! // my tasks extern Task stepping_task; extern Task rest_task; int step_target = 0; int step_duration = 10000; void stepping() { // // if (stepper.distanceToGo() == 0) { // float cur_step = stepper.currentPosition(); float target_step = step_target; float dur = step_duration; // float target_step = notes[score_now][note_idx][0]; // float dur = notes[score_now][note_idx][1]; float steps = target_step - cur_step; float velocity = steps / dur * 1000; // unit conv.: (steps/msec) --> (steps/sec) float speed = fabs(velocity); // MONITORING_SERIAL.print("target_step --> "); MONITORING_SERIAL.println(target_step); MONITORING_SERIAL.print("dur --> "); MONITORING_SERIAL.println(dur); MONITORING_SERIAL.print("cur_step --> "); MONITORING_SERIAL.println(cur_step); // if (speed > STEPS_PER_SEC_MAX) { MONITORING_SERIAL.println("oh.. it might be TOO FAST for me.."); } else { MONITORING_SERIAL.println("okay. i m going."); } // stepper.enableOutputs(); stepper.moveTo(target_step); stepper.setSpeed(velocity); //NOTE: 'setSpeed' should come LATER than 'moveTo'! // --> 'moveTo' re-calculate the velocity. // --> so we need to re-override it. // // } } Task stepping_task(0, TASK_ONCE, &stepping); // void rest() { if (stepper.distanceToGo() == 0) { stepper.disableOutputs(); } } Task rest_task(1000, TASK_FOREVER, &rest); //*-*-*-*-*-*-*-*-*-*-*-*-* // extern Task hello_task; static int hello_delay = 0; void hello() { // Hello hello = { ID_KEY, stepper.currentPosition(), stepper.distanceToGo(), stepper.distanceToGo(), stepper.distanceToGo() }; // uint8_t frm_size = sizeof(Hello) + 2; uint8_t frm[frm_size]; frm[0] = '{'; memcpy(frm + 1, (uint8_t *) &hello, sizeof(Hello)); frm[frm_size - 1] = '}'; // //pseudo-broadcast using peer-list! // esp_now_send(AddressBook("root").list[0].mac, frm, frm_size); // MONITORING_SERIAL.write(frm, frm_size); MONITORING_SERIAL.println(" ==(esp_now_send/\"root\")==> "); // if (hello_delay > 0) { if (hello_delay < 100) hello_delay = 100; hello_task.restartDelayed(hello_delay); } } Task hello_task(0, TASK_ONCE, &hello); //task #0 : blink led extern Task blink_task; void blink() { // static int count = 0; count++; // switch (count % 4) { case 0: digitalWrite(LED_PIN, LOW); // first ON blink_task.delay(LED_ONTIME); break; case 1: digitalWrite(LED_PIN, HIGH); // first OFF blink_task.delay(LED_GAPTIME); break; case 2: digitalWrite(LED_PIN, LOW); // second ON blink_task.delay(LED_ONTIME); break; case 3: digitalWrite(LED_PIN, HIGH); // second OFF blink_task.delay(LED_PERIOD - 2* LED_ONTIME - LED_GAPTIME); break; } } Task blink_task(0, TASK_FOREVER, &blink, &runner, true); // -> ENABLED, at start-up. // on 'Note' void onNoteHandler(Note & n) { //is it for me? if (n.pitch == ID_KEY) { // step_target = n.x1; step_duration = n.x2; if (step_duration < 1000) step_duration = 1000; // hello_delay = n.ps; if (hello_delay > 0 && hello_task.isEnabled() == false) { hello_task.restart(); } // if (n.onoff == 1) { stepping_task.restartDelayed(10); } else if (n.onoff == 0) { rest_task.restartDelayed(10); } // } } // on 'receive' void onDataReceive(uint8_t * mac, uint8_t *incomingData, uint8_t len) { #if defined(HAVE_CLIENT) Serial.write(incomingData, len); // we share it w/ the client. #endif // on 'Note' if (incomingData[0] == '[' && incomingData[len - 1] == ']' && len == (sizeof(Note) + 2)) { // Note note; memcpy((uint8_t *) ¬e, incomingData + 1, sizeof(Note)); onNoteHandler(note); MONITORING_SERIAL.println(note.to_string()); } } // on 'sent' void onDataSent(uint8_t *mac_addr, uint8_t sendStatus) { if (sendStatus != 0) MONITORING_SERIAL.println("Delivery failed!"); } // void setup() { //led pinMode(LED_PIN, OUTPUT); //serial Serial.begin(115200); delay(100); //info Serial.println(); Serial.println(); Serial.println("\"hi, i m your postman.\""); Serial.println("-"); Serial.println("- * info >>>"); #if defined(ID_KEY) Serial.println("- identity (key): " + String(ID_KEY)); #endif Serial.println("- mac address: " + WiFi.macAddress()); Serial.println("- wifi channel: " + String(WIFI_CHANNEL)); Serial.println("-"); Serial.println("- * conf >>>"); #if defined(HAVE_CLIENT) Serial.println("- ======== 'HAVE_CLIENT' ========"); #endif #if defined(SERIAL_SWAP) Serial.println("- ======== 'SERIAL_SWAP' ========"); #endif #if defined(DISABLE_AP) Serial.println("- ======== 'DISABLE_AP' ========"); #endif Serial.println("-"); Serial.println("- * addresses >>>"); for (uint32_t i = 0; i < members.list.size(); i++) { Serial.print("- #" + String(i) + " : "); Serial.print(members.list[i].mac[0], HEX); for (int j = 1; j < 6; j++) { Serial.print(":"); Serial.print(members.list[i].mac[j], HEX); } Serial.print(" ==> " + members.list[i].name); Serial.println(); } Serial.println("-"); Serial.println("\".-.-.-. :)\""); Serial.println(); //wifi WiFiMode_t node_type = WIFI_AP_STA; #if defined(DISABLE_AP) system_phy_set_max_tpw(0); node_type = WIFI_STA; #endif WiFi.mode(node_type); //esp-now if (esp_now_init() != 0) { Serial.println("Error initializing ESP-NOW"); return; } esp_now_set_self_role(ESP_NOW_ROLE_COMBO); esp_now_register_send_cb(onDataSent); esp_now_register_recv_cb(onDataReceive); for (uint32_t i = 0; i < members.list.size(); i++) { esp_now_add_peer(members.list[i].mac, ESP_NOW_ROLE_COMBO, 1, NULL, 0); // <-- '1' : "Channel does not affect any function" ... *.-a // // int esp_now_add_peer(u8 *mac_addr, u8 role, u8 channel, u8 *key, u8 key_len) // - https://www.espressif.com/sites/default/files/documentation/2c-esp8266_non_os_sdk_api_reference_en.pdf // // "Channel does not affect any function, but only stores the channel information // for the application layer. The value is defined by the application layer. For // example, 0 means that the channel is not defined; 1 ~ 14 mean valid // channels; all the rest values can be assigned functions that are specified // by the application layer." // - https://www.espressif.com/sites/default/files/documentation/esp-now_user_guide_en.pdf } #if defined(SERIAL_SWAP) Serial.println("- ======== 'SERIAL_SWAP' ========"); // a proper say goodbye. Serial.println("\"bye, i will do 'swap' in 1 second. find me on alternative pins!\""); Serial.println("\" hint: osc wiring ==> esp8266(serial.swap) <-> teensy(serial3)\""); Serial.println("-"); Serial.println("\".-.-.-. :)\""); delay(1000); // flush out unsent serial messages. // moving... Serial.swap(); // use RXD2/TXD2 pins, afterwards. delay(100); // wait re-initialization of the 'Serial' #endif //random seed randomSeed(analogRead(0)); //stepper // "The fastest motor speed that can be reliably supported is about 4000 steps per // second at a clock frequency of 16 MHz on Arduino such as Uno etc." // @ AccelStepper.h stepper.setMaxSpeed(STEPS_PER_SEC_MAX); //steps per second (trade-off between speed vs. torque) #if (STEP_MODE == STEP_MODE_ACCELERATING) stepper.setAcceleration(ACCELERATION_MAX); #endif //tasks runner.addTask(stepping_task); runner.addTask(rest_task); runner.addTask(hello_task); rest_task.restartDelayed(500); } void loop() { // runner.execute(); // //stepper if (stepper.distanceToGo() != 0) { #if (STEP_MODE == STEP_MODE_CONSTANT_VEL) stepper.runSpeed(); #elif (STEP_MODE == STEP_MODE_ACCELERATING) stepper.run(); #endif } }