forest-all-around/sampler/Audio_SdFat.latest/synth_waveform.h
2020-01-03 18:05:36 +09:00

211 lines
5.5 KiB
C++
Executable file

/* Audio Library for Teensy 3.X
* Copyright (c) 2014, Paul Stoffregen, paul@pjrc.com
*
* Development of this audio library was funded by PJRC.COM, LLC by sales of
* Teensy and Audio Adaptor boards. Please support PJRC's efforts to develop
* open source software by purchasing Teensy or other PJRC products.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice, development funding notice, and this permission
* notice shall be included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef synth_waveform_h_
#define synth_waveform_h_
#include <Arduino.h>
#include "AudioStream.h"
#include "arm_math.h"
// waveforms.c
extern "C" {
extern const int16_t AudioWaveformSine[257];
}
#define WAVEFORM_SINE 0
#define WAVEFORM_SAWTOOTH 1
#define WAVEFORM_SQUARE 2
#define WAVEFORM_TRIANGLE 3
#define WAVEFORM_ARBITRARY 4
#define WAVEFORM_PULSE 5
#define WAVEFORM_SAWTOOTH_REVERSE 6
#define WAVEFORM_SAMPLE_HOLD 7
#define WAVEFORM_TRIANGLE_VARIABLE 8
class AudioSynthWaveform : public AudioStream
{
public:
AudioSynthWaveform(void) : AudioStream(0,NULL),
phase_accumulator(0), phase_increment(0), phase_offset(0),
magnitude(0), pulse_width(0x40000000),
arbdata(NULL), sample(0), tone_type(WAVEFORM_SINE),
tone_offset(0) {
}
void frequency(float freq) {
if (freq < 0.0) {
freq = 0.0;
} else if (freq > AUDIO_SAMPLE_RATE_EXACT / 2) {
freq = AUDIO_SAMPLE_RATE_EXACT / 2;
}
phase_increment = freq * (4294967296.0 / AUDIO_SAMPLE_RATE_EXACT);
if (phase_increment > 0x7FFE0000u) phase_increment = 0x7FFE0000;
}
void phase(float angle) {
if (angle < 0.0) {
angle = 0.0;
} else if (angle > 360.0) {
angle = angle - 360.0;
if (angle >= 360.0) return;
}
phase_offset = angle * (4294967296.0 / 360.0);
}
void amplitude(float n) { // 0 to 1.0
if (n < 0) {
n = 0;
} else if (n > 1.0) {
n = 1.0;
}
magnitude = n * 65536.0;
}
void offset(float n) {
if (n < -1.0) {
n = -1.0;
} else if (n > 1.0) {
n = 1.0;
}
tone_offset = n * 32767.0;
}
void pulseWidth(float n) { // 0.0 to 1.0
if (n < 0) {
n = 0;
} else if (n > 1.0) {
n = 1.0;
}
pulse_width = n * 4294967296.0;
}
void begin(short t_type) {
phase_offset = 0;
tone_type = t_type;
}
void begin(float t_amp, float t_freq, short t_type) {
amplitude(t_amp);
frequency(t_freq);
phase_offset = 0;
tone_type = t_type;
}
void arbitraryWaveform(const int16_t *data, float maxFreq) {
arbdata = data;
}
virtual void update(void);
private:
uint32_t phase_accumulator;
uint32_t phase_increment;
uint32_t phase_offset;
int32_t magnitude;
uint32_t pulse_width;
const int16_t *arbdata;
int16_t sample; // for WAVEFORM_SAMPLE_HOLD
short tone_type;
int16_t tone_offset;
};
class AudioSynthWaveformModulated : public AudioStream
{
public:
AudioSynthWaveformModulated(void) : AudioStream(2, inputQueueArray),
phase_accumulator(0), phase_increment(0), modulation_factor(32768),
magnitude(0), arbdata(NULL), sample(0), tone_offset(0),
tone_type(WAVEFORM_SINE), modulation_type(0) {
}
void frequency(float freq) {
if (freq < 0.0) {
freq = 0.0;
} else if (freq > AUDIO_SAMPLE_RATE_EXACT / 2) {
freq = AUDIO_SAMPLE_RATE_EXACT / 2;
}
phase_increment = freq * (4294967296.0 / AUDIO_SAMPLE_RATE_EXACT);
if (phase_increment > 0x7FFE0000u) phase_increment = 0x7FFE0000;
}
void amplitude(float n) { // 0 to 1.0
if (n < 0) {
n = 0;
} else if (n > 1.0) {
n = 1.0;
}
magnitude = n * 65536.0;
}
void offset(float n) {
if (n < -1.0) {
n = -1.0;
} else if (n > 1.0) {
n = 1.0;
}
tone_offset = n * 32767.0;
}
void begin(short t_type) {
tone_type = t_type;
}
void begin(float t_amp, float t_freq, short t_type) {
amplitude(t_amp);
frequency(t_freq);
tone_type = t_type;
}
void arbitraryWaveform(const int16_t *data, float maxFreq) {
arbdata = data;
}
void frequencyModulation(float octaves) {
if (octaves > 12.0) {
octaves = 12.0;
} else if (octaves < 0.1) {
octaves = 0.1;
}
modulation_factor = octaves * 4096.0;
modulation_type = 0;
}
void phaseModulation(float degrees) {
if (degrees > 9000.0) {
degrees = 9000.0;
} else if (degrees < 30.0) {
degrees = 30.0;
}
modulation_factor = degrees * (65536.0 / 180.0);
modulation_type = 1;
}
virtual void update(void);
private:
audio_block_t *inputQueueArray[2];
uint32_t phase_accumulator;
uint32_t phase_increment;
uint32_t modulation_factor;
int32_t magnitude;
const int16_t *arbdata;
uint32_t phasedata[AUDIO_BLOCK_SAMPLES];
int16_t sample; // for WAVEFORM_SAMPLE_HOLD
int16_t tone_offset;
uint8_t tone_type;
uint8_t modulation_type;
};
#endif