forest-all-around/roundly/src/main.cpp
2021-05-06 23:18:38 +09:00

445 lines
12 KiB
C++

//
// wirelessly connected cloud (based on ESP-NOW, a kind of LPWAN?)
//
//
// Conversation about the ROOT @ SEMA storage, Seoul
//
//
// 2021 02 15
//
// this module will be an esp-now node in a group.
// like, a bird in a group of birds.
//
// esp-now @ esp8266 w/ broadcast address (FF:FF:FF:FF:FF:FF)
// always broadcasting. everyone is 'talkative'.
//
// then, let it save a value in EEPROM (object with memory=mind?)
//============<identities>============
//
#define MY_GROUP_ID (20000)
#define MY_ID (MY_GROUP_ID + 100)
#define MY_SIGN ("ROUNDLY")
//
//============</identities>============
//==========<list-of-configurations>===========
//
// 'HAVE_CLIENT'
// --> i have a client. enable the client task.
//
// 'SERIAL_SWAP'
// --> UART pin swapped.
// you want this, when you want a bi-directional comm. to external client boards (e.g. teensy).
//
// 'DISABLE_AP'
// --> (questioning)...
//
// 'HAVE_CLIENT_I2C'
// --> i have a client w/ I2C i/f. enable the I2C client task.
//
//==========</list-of-configurations>==========
//
// (EMPTY)
//============<parameters>============
//
#define LED_PERIOD (11111)
#define LED_ONTIME (1)
#define LED_GAPTIME (222)
//
#define WIFI_CHANNEL 5
//
// 'MONITORING_SERIAL'
//
// --> sometimes, the 'Serial' is in use (for example, 'osc' node)
// then, use 'Serial1' - D4/GPIO2/TDX1 @ nodemcu (this is TX only.)
//
// --> otherwise, MONITORING_SERIAL == Serial.
//
#if defined(SERIAL_SWAP)
#define MONITORING_SERIAL (Serial1)
#else
#define MONITORING_SERIAL (Serial)
#endif
//
//============</parameters>===========
//============<board-specifics>============
#if defined(ARDUINO_FEATHER_ESP32) // featheresp32
#define LED_PIN 13
#else
#define LED_PIN 2
#endif
//============</board-specifics>===========
//arduino
#include <Arduino.h>
//post & addresses
#include "../../post.h"
//espnow
#include <ESP8266WiFi.h>
#include <espnow.h>
//task
#include <TaskScheduler.h>
Scheduler runner;
//-*-*-*-*-*-*-*-*-*-*-*-*-
#include <AccelStepper.h>
#define STEP_MODE_CONSTANT_VEL (0xDE00 + 0x01)
#define STEP_MODE_ACCELERATING (0xDE00 + 0x02)
#define STEP_MODE STEP_MODE_CONSTANT_VEL
// #define STEP_MODE STEP_MODE_ACCELERATING
// NOTE: --> well.. acceleration enabled mode.. is a bit worse. (less torque)
#define STEPS_PER_REV (2048.0)
// speed (rpm) * steps-per-revolution == speed (steps per minute)
// --> speed (steps per minute) / 60 == speed (steps per second)
// --> speed (steps per second) * 60 / steps-per-revolution == speed (rpm)
#define STEPS_PER_SEC_TO_RPM (60.0 / STEPS_PER_REV)
#define RPM_TO_STEPS_PER_SEC (STEPS_PER_REV / 60.0)
// parameter (torque-speed trade-off)
#define STEPS_PER_SEC_MAX (500)
#define RPM_MAX (STEPS_PER_SEC_MAX * STEPS_PER_SEC_TO_RPM)
#define ACCELERATION_MAX (500)
//
AccelStepper stepper(AccelStepper::FULL4WIRE, D5, D6, D7, D8, false); // N.B. - @esp8266, NEVER use "5, 6, 7, 8" -> do "D5, D6, D7, D8" !!
// my tasks
extern Task stepping_task;
extern Task moving_task;
extern Task rest_task;
// 'move' task --> relative movements
int move_target = 0;
int move_duration = 10000;
void moving() {
//
float velocity = move_target / move_duration * 1000; // unit conv.: (steps/msec) --> (steps/sec)
float speed = fabs(velocity);
//
MONITORING_SERIAL.print("move_target --> "); MONITORING_SERIAL.println(move_target);
MONITORING_SERIAL.print("move_duration --> "); MONITORING_SERIAL.println(move_duration);
//
if (speed > STEPS_PER_SEC_MAX) {
MONITORING_SERIAL.println("oh.. it might be TOO FAST for me..");
} else {
MONITORING_SERIAL.println("okay. i m going.");
}
//
stepper.enableOutputs();
stepper.moveTo(move_target + stepper.currentPosition());
stepper.setSpeed(velocity);
//NOTE: 'setSpeed' should come LATER than 'moveTo'!
// --> 'moveTo' re-calculate the velocity.
// --> so we need to re-override it.
//
// }
}
Task moving_task(0, TASK_ONCE, &moving);
// 'step' task --> absolute movements
int step_target = 0;
int step_duration = 10000;
void stepping() {
//
// if (stepper.distanceToGo() == 0) {
//
float cur_step = stepper.currentPosition();
float target_step = step_target;
float dur = step_duration;
// float target_step = notes[score_now][note_idx][0];
// float dur = notes[score_now][note_idx][1];
float steps = target_step - cur_step;
float velocity = steps / dur * 1000; // unit conv.: (steps/msec) --> (steps/sec)
float speed = fabs(velocity);
//
MONITORING_SERIAL.print("target_step --> "); MONITORING_SERIAL.println(target_step);
MONITORING_SERIAL.print("dur --> "); MONITORING_SERIAL.println(dur);
MONITORING_SERIAL.print("cur_step --> "); MONITORING_SERIAL.println(cur_step);
//
if (speed > STEPS_PER_SEC_MAX) {
MONITORING_SERIAL.println("oh.. it might be TOO FAST for me..");
} else {
MONITORING_SERIAL.println("okay. i m going.");
}
//
stepper.enableOutputs();
stepper.moveTo(target_step);
stepper.setSpeed(velocity);
//NOTE: 'setSpeed' should come LATER than 'moveTo'!
// --> 'moveTo' re-calculate the velocity.
// --> so we need to re-override it.
//
// }
}
Task stepping_task(0, TASK_ONCE, &stepping);
//
void rest() {
if (stepper.distanceToGo() == 0) {
stepper.disableOutputs();
}
}
Task rest_task(1000, TASK_FOREVER, &rest);
//*-*-*-*-*-*-*-*-*-*-*-*-*
//
extern Task hello_task;
static int hello_delay = 0;
void hello() {
//
byte mac[6];
WiFi.macAddress(mac);
uint32_t mac32 = (((((mac[2] << 8) + mac[3]) << 8) + mac[4]) << 8) + mac[5];
//
Hello hello(String(MY_SIGN), MY_ID, mac32); // the most basic 'hello'
// and you can append some floats
static int count = 0;
count++;
hello.h1 = (count % 1000);
hello.h2 = stepper.currentPosition();
hello.h3 = stepper.distanceToGo();
// hello.h4 = 0;
//
uint8_t frm_size = sizeof(Hello) + 2;
uint8_t frm[frm_size];
frm[0] = '{';
memcpy(frm + 1, (uint8_t *) &hello, sizeof(Hello));
frm[frm_size - 1] = '}';
//
esp_now_send(NULL, frm, frm_size); // to all peers in the list.
//
MONITORING_SERIAL.write(frm, frm_size);
MONITORING_SERIAL.println(" ==(esp_now_send/0)==> ");
//
if (hello_delay > 0) {
if (hello_delay < 100) hello_delay = 100;
hello_task.restartDelayed(hello_delay);
}
}
Task hello_task(0, TASK_ONCE, &hello, &runner, false);
//task #0 : blink led
extern Task blink_task;
void blink() {
//
static int count = 0;
count++;
//
switch (count % 4) {
case 0:
digitalWrite(LED_PIN, LOW); // first ON
blink_task.delay(LED_ONTIME);
break;
case 1:
digitalWrite(LED_PIN, HIGH); // first OFF
blink_task.delay(LED_GAPTIME);
break;
case 2:
digitalWrite(LED_PIN, LOW); // second ON
blink_task.delay(LED_ONTIME);
break;
case 3:
digitalWrite(LED_PIN, HIGH); // second OFF
blink_task.delay(LED_PERIOD - 2* LED_ONTIME - LED_GAPTIME);
break;
}
}
Task blink_task(0, TASK_FOREVER, &blink, &runner, true); // -> ENABLED, at start-up.
// on 'Note'
void onNoteHandler(Note & n) {
//is it for me?
if (n.id == MY_GROUP_ID || n.id == MY_ID) {
//
if (n.pitch == 0) {
//
if (n.onoff == 1) {
//
step_target = n.x1;
step_duration = n.x2;
if (step_duration < 1000) step_duration = 1000;
stepping_task.restartDelayed(10);
//
} else if (n.onoff == 0) {
//
move_target = 0;
move_duration = 1000;
moving_task.restartDelayed(10);
}
//
} else if (n.pitch == 1) {
//
if (n.onoff == 1) {
//
move_target = n.x1;
move_duration = n.x2;
if (move_duration < 1000) move_duration = 1000;
moving_task.restartDelayed(10);
//
} else if (n.onoff == 0) {
move_target = 0;
move_duration = 1000;
moving_task.restartDelayed(10);
}
//
}
}
}
// on 'receive'
void onDataReceive(uint8_t * mac, uint8_t *incomingData, uint8_t len) {
//
//MONITORING_SERIAL.write(incomingData, len);
//
#if defined(HAVE_CLIENT)
Serial.write(incomingData, len); // we pass it over to the client.
#endif
// open => identify => use.
if (incomingData[0] == '{' && incomingData[len - 1] == '}' && len == (sizeof(Hello) + 2)) {
Hello hello("");
memcpy((uint8_t *) &hello, incomingData + 1, sizeof(Hello));
//
MONITORING_SERIAL.println(hello.to_string());
//
}
// open => identify => use.
if (incomingData[0] == '[' && incomingData[len - 1] == ']' && len == (sizeof(Note) + 2)) {
Note note;
memcpy((uint8_t *) &note, incomingData + 1, sizeof(Note));
onNoteHandler(note);
//is it for me?
if (note.id == MY_GROUP_ID || note.id == MY_ID) {
hello_delay = note.ps;
if (hello_delay > 0 && hello_task.isEnabled() == false) {
hello_task.restart();
}
}
MONITORING_SERIAL.println(note.to_string());
}
}
// on 'sent'
void onDataSent(uint8_t *mac_addr, uint8_t sendStatus) {
if (sendStatus != 0) MONITORING_SERIAL.println("Delivery failed!");
}
//
void setup() {
//led
pinMode(LED_PIN, OUTPUT);
//serial
Serial.begin(115200);
delay(100);
//info
Serial.println();
Serial.println();
Serial.println("\"hi, i m your postman.\"");
Serial.println("-");
Serial.println("- my id: " + String(MY_ID) + ", gid: " + String(MY_GROUP_ID) + ", call me ==> \"" + String(MY_SIGN) + "\"");
Serial.println("- mac address: " + WiFi.macAddress() + ", channel: " + String(WIFI_CHANNEL));
#if defined(HAVE_CLIENT)
Serial.println("- ======== 'HAVE_CLIENT' ========");
#endif
#if defined(SERIAL_SWAP)
Serial.println("- ======== 'SERIAL_SWAP' ========");
#endif
#if defined(DISABLE_AP)
Serial.println("- ======== 'DISABLE_AP' ========");
#endif
#if defined(HAVE_CLIENT_I2C)
Serial.println("- ======== 'HAVE_CLIENT_I2C' ========");
#endif
Serial.println("-");
//wifi
WiFiMode_t node_type = WIFI_AP_STA;
#if defined(DISABLE_AP)
system_phy_set_max_tpw(0);
node_type = WIFI_STA;
#endif
WiFi.mode(node_type);
//esp-now
if (esp_now_init() != 0) {
Serial.println("Error initializing ESP-NOW");
return;
}
esp_now_set_self_role(ESP_NOW_ROLE_COMBO);
esp_now_register_send_cb(onDataSent);
esp_now_register_recv_cb(onDataReceive);
//
Serial.println("- ! (esp_now_add_peer) ==> add a 'broadcast peer' (FF:FF:FF:FF:FF:FF).");
uint8_t broadcastmac[6] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
esp_now_add_peer(broadcastmac, ESP_NOW_ROLE_COMBO, 1, NULL, 0);
//
Serial.println("-");
Serial.println("\".-.-.-. :)\"");
Serial.println();
#if defined(SERIAL_SWAP)
Serial.println("- ======== 'SERIAL_SWAP' ========");
// a proper say goodbye.
Serial.println("\"bye, i will do 'swap' in 1 second. find me on alternative pins!\"");
Serial.println("\" hint: osc wiring ==> esp8266(serial.swap) <-> teensy(serial3)\"");
Serial.println("-");
Serial.println("\".-.-.-. :)\"");
delay(1000); // flush out unsent serial messages.
// moving...
Serial.swap(); // use RXD2/TXD2 pins, afterwards.
delay(100); // wait re-initialization of the 'Serial'
#endif
//random seed
randomSeed(analogRead(0));
//stepper
// "The fastest motor speed that can be reliably supported is about 4000 steps per
// second at a clock frequency of 16 MHz on Arduino such as Uno etc."
// @ AccelStepper.h
stepper.setMaxSpeed(STEPS_PER_SEC_MAX); //steps per second (trade-off between speed vs. torque)
#if (STEP_MODE == STEP_MODE_ACCELERATING)
stepper.setAcceleration(ACCELERATION_MAX);
#endif
//tasks
runner.addTask(stepping_task);
runner.addTask(moving_task);
runner.addTask(rest_task);
rest_task.restartDelayed(500);
}
void loop() {
//
runner.execute();
//
//stepper
if (stepper.distanceToGo() != 0) {
#if (STEP_MODE == STEP_MODE_CONSTANT_VEL)
stepper.runSpeed();
#elif (STEP_MODE == STEP_MODE_ACCELERATING)
stepper.run();
#endif
}
}